Determinación de parámetros termodinámicos y de diseño de una celda combustible de hidrógeno a nivel de planta piloto

Autores/as

  • Henry Reyes Pineda Universidad del Quindío

Palabras clave:

Propiedades Termodinámicas, celda combustible (reactor electroquímico), Nafion 117, potenciostáticas, galvanostáticas

Resumen

La producción limpia de energías alternativas, es un reto que afronta la sociedad, por ello, a través del análisis y diseño realizado a un prototipo de celda de producción de hidrógeno tipo protónico a nivel de planta piloto (PEM), operando en condiciones potenciostáticas de 1 V, 1,23 V, y 5 V y condiciones galvanostáticas de 30 mA, 40 mA, 50 mA, 70 mA, 80 mA y 90 mA durante 10 minutos, utilizando como catalizador KOH y cuatro electrodos de acero previamente activados con una separación de 3 mm entre ellos (superficie 73 cm2), se permitió obtener los parámetros termodinámicos como son la entalpia de la reacción, la Energía Libre de Gibbs, y la Entropía; además se estableció el potencial de trabajo experimental óptimo y la eficiencia energética cuando se utilizaba una membrana Nafion
117 activada (superficie 36 Cm2) y en ausencia de la misma.

Biografía del autor/a

  • Henry Reyes Pineda, Universidad del Quindío

    Henry Reyes Pineda is a graduate chemical engineer at the National
    University of Colombia, Manizales with specialization in Environmental
    Education, Specialization in Electrochemical Engineering and Corrosion,
    Diploma of Advanced Studies in Technology Membranes, Electrochemistry
    and Environment Nuclear Safety and a PhD in Chemical and Nuclear
    Engineering Polytechnic University of Valencia, Spain.
    He is currently a full professor at the University of Quindio, Armenia,
    Colombia and Director of the Master in Chemistry since 2010 and is part of
    the Chemical Group Environmental Research and Development.
    He has taught at the University of Caldas, National University, Manizales
    and Autonomous University of Manizales. His areas of research work are
    Electrochemical Engineering, Environmental Processes, Treatment of solid
    and liquid waste, the design of reactors, among others.
    Dr. Reyes Pineda, graduated in 2007, earning top marks in his doctoral
    thesis: “Cum Laude”. He has been visiting professor at three times the
    Polytechnic University of Valencia, Spain and twice to the University of Santa
    Cruz do Sul, Brazil, developing academic and research activities. He has also
    participated as a speaker at various national and international conferences.

Referencias

Dodik Kurniawan, Hayato Arai, Shigeaki Morita, Kuniyuki Kitagawa. Chemical degradation of Nafion ionomer at a catalyst interface of polymer electrolyte fuel cell by hydrogen and oxygen feeding in the anode. Microchemical Journal, volume 106, pp. 384–388, 2013.

Hsieh-YuLi, Yun-YangLee, Juin-Yih L, Ying-Ling. Liu Composite membranes of Nafion and poly (styrenesulfonicacid)-graftedpoly (vinylidene fluoride) electrospun nanofiber mats for fuel cells. Journal of Membrane Science, volume 466, pp. 238–245, 2014.

Bingbing Wua, Ming Zhao, Weiyu Shi, Wenming Liu, Jianguo Liu, Danmin Xing, Yingfang Yao , Zhongjun Hou ,Pingwen Ming Jun Gu, Zhigang Zou The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests. International journal o f hydrogen energy, volume 39, pp. 14381-14390, 2014.

Dodik Kurniawan, Shigeaki Morita, Kuniyuki Kitagawa. Durability of Nafion-hydrophilic silica hybrid membrane against trace radial species in polymer electrolyte fuel cells. Microchemical Journal, volume 108, pp. 60–63, 2013.

Ted H. Yu, Wei-Guang Liu, Yao Sha, Boris V .Merinov, Pezhman Shirvanian, William A. Goddard. The effectof different environment son Nafion degradation:Quantum mechanics study. Journal of Membrane Science, volume 437, pp. 276–285, 2013.

Rafael Nogueira Bonificacio, Almir Oliveira Neto, Marcelo Linardi Influence of the relative volumes between catalyst and Nafion ionomer in the catalyst layer efficiency. International journal o f hydrogen energy, volume 39, pp. 14680-14689, 2014.

Stefan Kreitmeier, Gabriel A. Schuler, Alexander Wokaun, Felix N. Büchi. Investigation of membrane degradation in polymer electrolyte fuel cells using local gas permeation analysis. Journal of Power Sources, volume 212, pp. 139-147, 2013.

Teuku Husaini, Majlan Edy Herianto, Yaakob Zahira, Wan Daud Wan Ramli. PTFE- Nafion membrane reactor for hydrogen production. International Journal o f hydrogen energy, volume 38, pp. 9553-9561, 2013.

Minoru Umeda, Kazuya Sayama, Takahiro Maruta and Mitsuhiro Inoue Proton activity of Nafion 117 membrane measured from potential difference of hydrogen electrodes. Ionics, volumen 19, pp. 623–627, 2013.

Bladimir Ramos-Alvarado, Joshua D. Sole, Abel Hernandez-Guerrero, Michael W. Ellis Experimental characterization of the water transport properties of PEM fuel cells diffusion media. Journal of Power Sources, volume 218, pp. 221-232, 2012.

N. Yousfi-Steiner, Ph. Moc¸ ote´guya, D. Candussoc, D. Hissel, A. Hernandezb, A. Aslanides A review on PEM voltage degradation associated with water management: Impacts, influent factors and characterization. Journal of Power Sources, volume 183, pp. 260–274, 2008.

Yueqi Luo, Kui Jiao Bin Jia. Elucidating the constant power, current and voltage cold start modes of proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer, volume 77, pp. 489– 500, 2014.

Z, Omar, Sharaf, Mehmet F. Orhan. An overview of fuel cell technology: fundamentals and applications renewable and Sustainable. Energy Reviews, volume 32, pp. 810–853, 2014.

K. Polychronopoulou, C.M. Kalamaras, A.M. Efstathiou. (2011). Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water–gas shift reactions, Recent Pat. Mater. Sci. 4 Volume 2, pp. 1–24, 2011.

Ramos Silvina, Gabriela. Electrodos de tecnología avanzada para sistemas de conversión de energía. Universidad Nacional de La Plata. La Plata. 2013.

C. Heitner-Wirguin. (1996). Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J. Membr. Sci. volume 120, pp. 1-33, 1996.

K.D. Kreuer. On the development of proton conducting materials for technological applications. Solid State Ionics, volume 97, pp. 1-15, 1997.

Larminie, J., Dicks, A., Chichester, John. Wiley & Sons. Fuel cell systems explained. Second Edition. London, 2000.

Mayandía Aguirre, Antonio. Descripción y Modelado de una Pila de Combustible de Membrana de Intercambio Protónico. Universidad Carlos III de Madrid. Madrid. 2009.

Reyes H., Pérez Herranz. Aplicación de la Química Industrial en Reactores Electroquímicos de Compartimentos Separados. Entre Ciencia e Ingeniería, volumen 12, pp. 9 – 20, 2010.

Reyes Pineda, Henry. Estudio de la recuperación de cromo hexavalente mediante un reactor electroquímico de compartimentos separados por separadores cerámicos. Universidad Politécnica de Valencia. Tesis Doctoral 2007.

Larminie, J., Dicks, A., Chichester, John. Wiley & Sons. Fuel cell systems explained. Second Edition. London 2000.

Hinatsu JT, Mizuhata M, Takenaka H. Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. Journal of Electrochem Soc, volume 141, pp. 1493–1498, 1994.

Chen S-L, Xu K-Q, Dong P. Preparation of threedimensionally ordered inorganic/organic bi-continuous composite proton conducting membranes. Chem Materials, volume 17, pp. 5880–5883, 2005.

Acuña Garrido, Fráncico., Muñoz Yi, Ventura. Una alternativa amigable con el medio ambiente para la generación de potencia y su impacto con el desarrollo sostenible en Colombia en el siglo XXI. 2011.

K. Polychronopoulou, C.M. Kalamaras, A.M. Efstathiou. (2011). Ceria-based materials for hydrogen production via hydrocarbon steam reforming and water–gas shift reactions, Recent Pat. Mater. Sci. volume 4, pp. 1–24, 2011.

Umberto Lucia. Overview on fuel cells. Renewable and Sustainable Energy Reviews, volume 30, pp. 164–169, 2014.

Descargas

Publicado

2014-12-12

Número

Sección

Artículos

Cómo citar

Determinación de parámetros termodinámicos y de diseño de una celda combustible de hidrógeno a nivel de planta piloto. (2014). Entre Ciencia E Ingeniería, 8(16), 83-89. https://ojs.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/621