Obtaining and characterization of coatings of Brushite, Titanium Dioxide (TiO2) and its bilayers on steel 316L
DOI:
https://doi.org/10.31908/19098367.3713Keywords:
Brushite, Titanium Dioxide, electrochemistry, SilarAbstract
The synthesis and study of biomaterials possessing biomechanical and biocompatibility properties is a subject of continuous research by the scientifi c community. Compounds such as hydroxyapatite (HA) and brushite, which have interesting properties and are biocompatible, are being used as a barrier layer between materials such as 316L steel and biological media, thus reducing the iron ion fl ux from the steel to the Biological fl uids. Although recent studies have presented advances regarding the adhesion of these materials to diff erent metals, there are still open challenges to improve the adhesion of these materials to the desired metal. In this work, we have implemented coatings composed of brushite and titanium dioxide (TiO2) bilayers. Following are the protocols followed for synthesis of brushite, titanium dioxide and bilayer coatings on 316 L steel, as well as the structural characterization by infra-red spectrometry (FTIR), X-ray diff raction (XRD), electron microscopy of Scanning (SEM) and dispersive energy spectroscopy (EDS) of the coatings obtained.
References
López, D., Rosero, N., Ballare, J., Durán, A., Aparicio, M., Ceré, S. Surface Coatings Technology, (10): 2194-2201, 2008, pp. 202.
Wen, C., Xu, W., Hu, Y., Hodgson, P. “Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications,” Acta Biomaterialia, vol. 3, no. 1, pp. 403-410, 2007.
Min Ho, H., Dong Hyun, H., Kwang Mahn, K., Yong Keun, L. “Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation,” Thin Solids Films, vol. 519, no. 1, pp. 7065-7070, 2011.
Balamurugan, A., Balossier, G., Kannan, S., Michel, S., Rajeswari, S. “Electrochemical and structural characterization of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings on surgical grade 316L SS for biomedical applications,” Materials Science Engineering, vol. 27, no. 1, pp. 162-171, 2007.
Britel, O. “Modélisation et optimisation part la methodologie desplans d’expérience de la synthèse de l’hydroxyapatite phosphocalcique, du phosphate tricalcique apatitique et du phosphate de calcium apatitique carbonate,” Thése doctorale, Université Mohammed V – Agdal Faculté Des Sciences, 2007.
Xie, J., Luan, L. “Formation of hydroxyapatite coating using novel chemo-biomimetic method,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 10, pp. 3211-3220, 2008.
Yang, X. “Biomimetic Ca-P coating on precalcified Ti plates by electrodeposition method,” Applied surface science, vol. 256, no. 9, pp. 2700-2704, 2010.
Forsgren, J. “Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates,” Acta Biomaterialia, vol. 3, no. 6, pp. 980-984, 2007.
Ohtsuki, C., Kamitakahara, M., Miyazaki, T. “Coating bone-like apatite onto organic substrates using solutions mimicking body fluid,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 1, pp. 33-38, 2007.
Takeuchi, A. “Biomimetic deposition of hydroxyapatite on a synthetic polypeptide with β sheet structure in a solution mimicking body fluid,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 1, pp. 387-393, 2008.
Pribosic, I., Klopcic, S.B., Kosmac, T. “Biomimetic preparation and characterization of bioactive coatings on alumina and zirconia ceramics,” Journal of the American Ceramic Society, vol. 93, no. 1, pp. 288-294, 2010.
Wood, M.A. “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” Journal of the Royal Society Interface, vol. 4, no. 12, pp. 1-17, 2007.
Li, Y. “The biocompatibility of nanostructured calcium phosphate coated on micro-arc oxidized titanium,” Biomaterials, vol. 29, no. 13, pp. 2025-2032, 2008.
Guo, Y., Zhou, Y., Jia, D. “Fabrication of hydroxycarbonate apatite coatings with hierarchically porous structures,” Acta Biomaterialia, vol. 4, no. 2, pp. 334-342, 2008.
Marie, P.J. “Strontium ranelate: a novel mode of action optimizing bone formation and resorption,” Osteoporos, vol. 16, no. 1, pp. 7-10, 2005.
Ammann, P. “Strontium ranelate: a novel mode of action leading to renewed bone quality,” Osteoporos, vol. 16, no. 1, pp. 11-15, 2005.
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D. “Understanding TiO2 Photocatalysis: Mechanisms and Materials,” Chem. Rev., vol. 114, no. 19, p. 9919– 9986, 2014.
Diamond, S., Kennedy, S., Melby, N., Moser, R., Poda, A., Weiss, C., Brame, J. “Assessment of the potential hazard of nano-scale TiO2 in photocatalytic cement: application of a tiered assessment framework,” NanoImpact, vol. 8, pp. 11-19, 2017.
Lamberti, A., Pirri, C. “TiO2 nanotube array as biocompatible electrode in view of implantable supercapacitors,” Journal of Energy Storage, vol. 8, pp. 193-197, 2016.
Wang, L., Shi, L., Chen, J., Shi, Z., Ren, L., Wang, L. “Biocompatibility of Si-incorporated TiO2 film prepared by micro-arc oxidation,” Materials Letters, vol. 116, pp. 35-38, 2014.
Awad, N., Edwards, S., Morsy, Y. “A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants,” Materials Science and Engineering: C, vol. 76, pp. 1401-1412, 2017.
Brett, C., M. B. A, Electrochemistry: Principles, methods and applications, Oxford University Press, 1993.
García, F.J., Giraldo, B.S., Parra, E.R., Lopez, G.L. “Synthesis of TiO2 thin films by the SILAR method and study of the influence of annealing on its structural, morphological and optical properties,” Ingeniare, vol. 23, no. 4, pp. 622-629, 2014.
García, F. N. J., Álvarez, H. H. O., Pineda, H.R. “Depósito de películas de ZnSO4 • 3Zn(OH)2 • 4H2O por el método SILAR y su estudio por DRX, SEM Y μ-RAMAN,” Ingeniería y Ciencia, vol. 8, no. 15, pp. 31-45, 2012.
Jaworski, R. “Characterization of mechanical properties of suspension plasma sprayed TiO2 coatings using scratch test,” Surface & Coatings Technology, vol. 202, no. 12, pp. 2644-2653, 2008.
Lamaka, S. “Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability,” Process in organic coatings, vol. 58, no. 2-3, pp. 127-135, 2007. [27] González, M. d. l. A., González, M. “Deposición electroquímica de películas superconductoras de alta temperatura crítica.,” Universidad Complutense de Madrid. Facultad de Ciencias Químicas. Departamento de Química Inorgánica., 1999-2000.
Hernández Enríquez, M., García Serrano, L.A., Zeifert Soares, B.H., García Alamilla, R., Zermeño Resendiz, B., Del Angel Sánchez, T., Cueto Hernández, A. “Síntesis y Caracterización de Nanopartículas de N-TiO 2 – Anatasa,” Superf. y Vacío, vol. 21, no. 4, pp. 1-5, 2008.
Arias Durán, A. “Determinación de Parámetros Óptimos Para la Obtención de Películas Delgadas de TiO2 en Fase Anatasa Mediante la Técnica Magnetrón Sputtering d.c.,” Santiago de Cali, 2013.