Identification of human movement through video processing
DOI:
https://doi.org/10.31908/19098367.1152Keywords:
Video processing, activity recognitionAbstract
Studies of face recognition and movements of the human body have opened frontiers for different knowledge areas. The objective of this paper is to show an alternative methodology to identify faces and make a characterization of the human body movement. This methodology has three phases. The first phase is a generation of a video database in a NoSQL model using MongDB. The second phase permits to identify human faces applying an algorithm that combines Hough Transform and the Viola-Jones algorithm. And the third phase makes an identification of human movement using optical flow histogram-oriented gradients. The main results show that the face identification permits to select a relevance range for an approximation of the interest or actor area. This interest area is a base to apply the optical flow, avoiding false positives, like shadows or reflections produced by the environment. Finally, we conclude that the obtainment of a clear frontal view of the face supplies an easy way for human action tracking.
References
Manovich, L. El lenguaje de los nuevos medios de comunicación. Cambridge, EEUU: the MIT Press., 2001.
Portafolio. Los fabricantes de videojuegos le apuestan al movimiento y 3D.Availablein:http://www.portafolio.co/economia/finanzas/fabOricantes-videojuegos-le-apuestan-movimiento-3d-478406 Access Date: 18/05/2017, 2010.
Fujimori, Y., Ohmura, Y., y Harada, T. Wearable motion capture suit with full-body tactile sensors. IEEE International Conference on Robotics and Automation.. Availablein: https://ieeexplore-ieee-org.ezproxy.umng.edu.co/document/5152758/ Access Date: 18/05/2017, 2009.DOI:10.1109/robot.2009.5152758.
Ros, A., y Mendonça, I. Captura de movimiento de personas con múltiples sensores Kinect. Universidad Simon Bolivar. Available in: http://159.90.80.55/tesis/000155335.pdf Access Date: 18/05/2017, 2012.
Buraglia, M. Sistema de seguimiento del cambio de la postura de una persona que realiza una actividad en un lugar cerrado. Available in: https://repository.javeriana.edu.co/bitstream/handle/10554/7019/tesis466.pdf?sequence=1. Access Date: 26/06/2018, 2010.
Corazza, S., Mündermann, L., Andriacchi, M. Motion Capture Methods for the Estimation of Human Body Kinematics. Available in: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.1772&rep=rep1&type=pdf Access Date: 26/06/2018. 2006.doi=10.1.1.97.1772.
Corazza, S., Mündermann, L. Andriacchi, T. P. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1513229/ Access Date: 26/06/2018, 2006. Doi: 10.1186/1743-0003-3-6.
Hough, V., y Paul, C. A. Method and means for recognizing complex patterns. Available in: http://www.freepatentsonline.com/3069654.html> Access Date: 03/06/2017, 1962.
Viola, P., and Jones, M. J. Robust Real-Time Face Detection. International Journal of Computer Vision. Available in: < https://link.springer.com/article/10.1023%2FB%3AVISI.0000013087.49260.fb Access Date: 03/06/2017, 2004.DOI:10.1023/B: VISI.0000013087.49260.fb.
Lucas, B. D., and Kanade, T. An iterative image-registration technique with an application to stereo vision. The 7th international joint conference on Artificial intelligence. doi=10.1.1.421.4619. Available in: http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.421.4619>Access Date: 04/06/2017, 1981.