Optimization of a microgrid operation considering operation cost, life of the batteries and uncertainty cost of eolic energy

Authors

DOI:

https://doi.org/10.31908/19098367.4011

Abstract

Nowadays, autonomous systems that incorporate renewable energy sources and energy storage systems play a fundamental role as a solution to energy supply problems. These systems are a good alternative, mainly in remote areas of the electricity network such as islands. This paper analyzes the cost of battery life, operation and maintenance costs and the uncertainty costs associated with renewable energy agents for an autonomous microgrid developed on Dong-fushan Island in China, all in order to obtain the adequate parameters for the optimum operation of the same, without forgetting the characteristics of useful life in specific lead-acid batteries. It is intended, through the non-dominant algorithm of genetic classification (NSGA II), to achieve maximization of the aforementioned variables: useful life of the batteries, and the reduction of the generation cost, proposing a multi-objective optimization. In addition to the above, the costs of uncertainty associated with renewable wind energy are included.

Author Biographies

  • Erik Esteban Carvajal González, Universidad Nacional de Colombia

    Nowadays, autonomous systems that incorporate renewable energy sources and energy storage systems play a fundamental role as a solution to energy supply problems. These systems are a good alternative, mainly in remote areas of the electricity network such as islands. This paper analyzes the cost of battery life, operation and maintenance costs and the uncertainty costs associated with renewable energy agents for an autonomous microgrid developed on Dong-fushan Island in China, all in order to obtain the adequate parameters for the optimum operation of the same, without forgetting the characteristics of useful life in specific lead-acid batteries. It is intended, through the non-dominant algorithm of genetic classification (NSGA II), to achieve maximization of the aforementioned variables: useful life of the batteries, and the reduction of the generation cost, proposing a multi-objective optimization. In addition to the above, the costs of uncertainty associated with renewable wind energy are included.

  • Gustavo Javier Muñoz López

    Ingeniero electricista egresado de la Facultad de Ingeniería Eléctrica y Electrónica de la Universidad Nacional de Colombia, sede Bogotá. Enfocado en proyectos de energías renovables, como iluminación solar en Campo Rubiales, Meta, de Ecopetrol, y Energías fotovoltaicas para campamentos aislados; trabajos de confiabilidad de redes eléctricas de 34,5 KV y coordinación de protecciones eléctricas de potencia en la red de distribución de 186 MW de campo Rubiales, Meta.

  • Sergio Rivera, Universidad Nacional de Colombia

    PhD. Ing. Electricista de Universidad Nacional de Colombia (2001); esp. en Ingeniería Eléctrica con énfasis en Sistemas de Distribución; PhD en Ingeniería Eléctrica del Instituto de Energía Eléctrica, Universidad Nacional de San Juan (2011). PhD. Asociado en el MIT – Massachusetts Institute of Technology (2013); profesor en Universidad Nacional de Colombia en el área de sistemas de potencia y máquinas eléctricas (2014).

References

Duan S., Liu N. and Cai Y.o, "Optimal operation of the island

microgrid with renewable energy and desalination". Proceedings

International Conference on Mechatronic Sciences, Electric

Engineering and Computer (MEC), Shengyang, 2013, pp. 3718-

Lu, X.; Liu, N.; Chen, Q. and Zhang, J. "Multi-objective optimal

scheduling of a DC micro-grid consisted of PV system and EV

charging station," 2014 IEEE Innovative Smart Grid Technologies -

Asia (ISGT ASIA), Kuala Lumpur, 2014, pp. 487-491.

Molina, F.; Pérez, S. and Rivera, S. "Formulación de Funciones de

Costo de Incertidumbre en Pequeñas Centrales Hidroeléctricas

dentro de una Microgrid", Ingenierías USBmed, vol. 8, no. 1, p. 29,

Bo Z., Xuesong Z., Jian C., Caisheng W., ., and Li G. Operation

Optimization of Standalone Microgrids Considering Lifetime

Characteristics of Battery Energy Storage System. IEEE

TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 4, NO. 4,

October 2013.

Chamba, M. and Ano, O. "Economic Dispatch of Energy and

Reserve in Competitive Markets Using Meta-heuristic Algorithms,"

in IEEE Latin America Transactions, vol. 11, no. 1, pp. 473-478,

Feb. 2013.

doi:10.1109/TLA.2013.6502848.URL: http://ieeexplore.ieee.org/sta

mp/stamp.jsp?tp=&arnumber=6502848&isnumber=6502768.

Watson, J. D.; Watson, N. R. and Lestas, I. "Optimized Dispatch of

Energy Storage Systems in Unbalanced Distribution Networks,"

in IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 639-

, April 2018.doi: 10.1109/TSTE.2017.2752964.

Kakimoto, N.; Matsumura, S.; Kobayashi, K. and Shoji, M. "Two-

State Markov Model of Solar Radiation and Consideration on

Storage Size,” IEEE Transactions on Sustainable Energy, vol. 5, no.

, pp. 171-181, Jan. 2014. doi:10.1109/TSTE.2013.2278547.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=661

&isnumber=6683079.

Zhao, J.; Wen, F.; Dong, Z. Y.; Xue, Y. and Wong, K. P. "Optimal

Dispatch of Electric Vehicles and Wind Power Using Enhanced

Particle Swarm Optimization," IEEE Transactions on Industrial

Informatics, vol. 8, no. 4, pp. 889-899, Nov. 2012.

doi:10.1109/TII.2012.2205398.URL: http://ieeexplore.ieee.org/stamp

/stamp.jsp?tp=&arnumber=6222000&isnumber=6335505.

Hetzer, J.; Yu, D. C. and Bhattarai, K. "An Economic Dispatch

Model Incorporating Wind Power," IEEE Transactions on Energy

Conversion, vol. 23, no. 2, pp. 603-611, June 2008.

doi:10.1109/TEC.2007.914171.URL: http://ieeexplore.ieee.org/stam

p/stamp.jsp?tp=&arnumber=4505391&isnumber=4505383.

Huang, H.; Chung, C. Y.; Chan, K. W. and Chen, H. "Quasi-Monte

Carlo Based Probabilistic Small Signal Stability Analysis for Power

Systems with Plug-In Electric Vehicle and Wind Power

Integration," IEEE Transactions on Power Systems, vol. 28, no. 3,

pp.3335-3343, Aug.2013.doi: 10.1109/TPWRS.2013.2254505.

Chang, T. Investigation on Frequency Distribution of Global

Radiation Using Different Probability Density Functions.

International Journal of Applied Science and Engineering, 8(2), 99–

, 2010.

Hetzer, J.; Yu, D. C. and Bhattarai, K. An Economic Dispatch Model

Incorporating Wind Power. IEEE Transactions on Energy

Conversion, 23(2), 603–611.

Ramos, C.; Saavedra, A. and Arango, E. Distributed Maximum

Power Point Tracking in Wind Micro-Grids”. Revista Ingeniería,

(1), 5–13, 2012.

Miranda, V. y Alves, R. Differential Evolutionary Particle Swarm

Optimization (DEEPSO): A Successful Hybrid," 2013 BRICS

Congress on Computational Intelligence and 11th Brazilian Congress

on Computational Intelligence, Ipojuca, 368-374, 2013. doi:

1109/BRICS-CCI-CBIC.2013.68.

Mayer, D.G.; Kinghorn, B. P.; Archer, A. A. Differential evolution –

an easy and efficient evolutionary algorithm for model optimization,

Agricultural Systems, 2005, 83, 3, 315-328, ISSN 0308-521X.

Published

2019-06-01

Issue

Section

Artículos

How to Cite

Optimization of a microgrid operation considering operation cost, life of the batteries and uncertainty cost of eolic energy. (2019). Entre Ciencia E ingeniería, 13(25), 23-34. https://doi.org/10.31908/19098367.4011