Simulación del proceso de producción de ácido clavulánico
DOI:
https://doi.org/10.31908/19098367.2830Palabras clave:
Acido clavulánico, Aspen plus, Esquema de producción, Estrategia de simulación, Procesos biotecnológicos, Simulación de procesos.Resumen
El Ácido Clavulánico es un metabolito ampliamente utilizado con distintas combinaciones de antibióticos para contrarrestar diferentes enfermedades infecciosas. Este metabolito no se produce en Colombia a pesar de tener una gran demanda a nivel nacional, aparentemente debido a sus altos costos de producción y a la poca información que se tiene del proceso global. En esta investigación se usan diferentes reportes de la literatura para presentar un esquema generalizado de la producción de este metabolito y, con ayuda del software Aspen plus, la implementación de un modelo para simular el proceso de producción, incluyendo etapas de pretratamiento, producción y postratamiento o purificación. El modelo resulta de gran utilidad para analizar costos o evaluar eventuales cambios en el proceso de producción, constituyendo una herramienta útil para el estudio y entendimiento del proceso, así como para la toma de decisiones frente a su eventual implementación.
Referencias
P. S. Saudagar, S. A. Survase, and R. S. Singhal, “Clavulanic acid: A review,” Biotechnol. Adv., vol. 26, no. 4, pp. 335–351, 2008.
C. Tooke et al., “β-Lactamases and β-Lactamase Inhibitors in the 21st Century,” J. Mol. Biol., vol. 431, no. 18, pp. 3472–3500, 2019.
Y. Zhang et al., “Experiments and simulation of varying parameters in cryogenic flue gas desulfurization process based on Aspen plus,” Sep. Purif. Technol., vol. 259, no. November 2020, p. 118223, 2021.
L. C. G. Domingues, J. C. Teodoro, C. O. Hokka, A. C. Badino, and M. L. G. C. Araujo, “Optimisation of the glycerol-to-ornithine molar ratio in the feed medium for the continuous production of clavulanic acid by Streptomyces clavuligerus,” Biochem. Eng. J., vol. 53, no. 1, pp. 7–11, 2010.
J. C. Rosa, A. B. Neto, C. O. Hokka, and A. C. Badino, “Influence of dissolved oxygen and shear conditions on clavulanic acid production by Streptomyces clavuligerus,” Bioprocess Biosyst. Eng., vol. 27, no. 2, pp. 99–104, 2005.
J. A. Roubos, P. Krabben, W. T. A. M. De Laat, R. Babuška, and J. J. Heijnen, “Clavulanic acid degradation in Streptomyces clavuligerus fed-batch cultivations,” Biotechnol. Prog., vol. 18, no. 3, pp. 451–457, 2002.
D. Gómez-Ríos et al., “A genome-scale insight into the effect of shear stress during the fed-batch production of clavulanic acid by streptomyces clavuligerus,” Microorganisms, vol. 8, no. 9, pp. 1–19, 2020.
Á. ́ Baptista-Neto, J. C. Teodoro, L. C. M. Cassiano Filho, A. C. Badino, and C. O. Hokka, “Comparisons between continuous and batch processing to produce clavulanic acid by Streptomyces clavuligerus,” Brazilian Arch. Biol. Technol., vol. 48, no. SPEC. ISS., pp. 97–104, 2005.
C. L. L. Costa and A. C. Badino, “Overproduction of clavulanic acid by extractive fermentation,” Electron. J. Biotechnol., vol. 18, no. 3, pp. 154–160, 2015.
R. Pérez-Redondo, I. Santamarta, R. Bovenberg, J. F. Martín, and P. Liras, “The enigmatic lack of glucose utilization in Streptomyces clavuligerus is due to inefficient expression of the glucose permease gene,” Microbiology, vol. 156, no. 5, pp. 1527–1537, 2010.
J. C. Teodoro, A. Baptista-Neto, M. L. G. C. Araujo, C. O. Hokka, and A. C. Badino, “Influence of glycerol and ornithine feeding on clavulanic acid production by streptomyces clavuligerus,” Brazilian J. Chem. Eng., vol. 27, no. 4, pp. 499–506, 2010.
K. C. da S. Rodrigues, A. T. de Souza, A. C. Badino, D. B. Pedrolli, and M. O. Cerri, “Screening of medium constituents for clavulanic acid production by Streptomyces clavuligerus,” Brazilian J. Microbiol., vol. 49, no. 4, pp. 832–839, 2018.
C. Martin, T. Thomas, and R. Christopher, “Purified Clavulanic Acid and Salts thereof,” 6051703-US006051703A, 2000.
C. Bellão, T. Antonio, M. L. G. C. Araujo, and A. C. Badino, “Production of clavulanic acid and cephamycin c by streptomyces clavuligerus under different fed-batch conditions,” Brazilian J. Chem. Eng., vol. 30, no. 2, pp. 257–266, 2013.
C. P. Henao, N. A. Grimaldos, and J. C. Diaz, “Producción de ácido clavulánico por fermentación de Streptomyces clavuligerus: Evaluación de diferentes medios de cultivo y modelado matemático,” DYNA, vol. 79, no. 175, pp. 158–165, 2012.
K. C. Chen, Y. H. Lin, C. M. Tsai, C. H. Hsieh, and J. Y. Houng, “Optimization of glycerol feeding for clavulanic acid production by streptomyces clavuligerus with glycerol feeding,” Biotechnol. Lett., vol. 24, no. 6, pp. 455–458, 2002.
C. L. L. Costa and A. C. Badino, “Production of clavulanic acid by Streptomyces clavuligerus in batch cultures without and with glycerol pulses under different temperature conditions,” Biochem. Eng. J., vol. 69, pp. 1–7, 2012.
K. C. Chen, Y. H. Lin, J. Y. Wu, and S. C. J. Hwang, “Enhancement of clavulanic acid production in Streptomyces clavuligerus with ornithine feeding,” Enzyme Microb. Technol., vol. 32, no. 1, pp. 152–156, 2003.
P. Panas, C. Lopes, M. O. Cerri, S. P. M. Ventura, V. C. Santos-Ebinuma, and J. F. B. Pereira, “Purification of clavulanic acid produced by Streptomyces clavuligerus via submerged fermentation using polyethylene glycol/cholinium chloride aqueous two-phase systems,” Fluid Phase Equilib., vol. 450, pp. 42–50, 2017.
C. S. Da Silva, M. F. Cuel, V. O. Barreto, W. H. Kwong, C. O. Hokka, and M. Barboza, “Separation of clavulanic acid from fermented broth of amino acids by an aqueous two-phase system and ion-exchange adsorption,” N. Biotechnol., vol. 29, no. 3, pp. 428–431, 2012.
M. B. S. Forte, C. Taviot-Guého, F. Leroux, M. I. Rodrigues, and F. Maugeri Filho, “Clavulanic acid separation on fixed bed columns of layered double hydroxides: Optimization of operating parameters using breakthrough curves,” Process Biochem., vol. 51, no. 4, pp. 509–516, 2016.
R. B. Haga, V. C. Santos-Ebinuma, M. De Siqueira Cardoso Silva, A. Pessoa, and C. O. Rangel-Yagui, “Clavulanic acid partitioning in charged aqueous two-phase micellar systems,” Sep. Purif. Technol., vol. 103, pp. 273–278, 2013.
Joaquim P. Cardoso, “Process for the isolation of pharmaceutically acceptable alkali metal salt of Clavulanic Acid,” 6417352 B1-US006417352B1, 2002.
V. C, Otero; M, Moreno; M, Lopez; A, Collados de la vieja; A, “Process for the production of Clavulanic Acid and/or salts thereof.”.
S. C. S. Lavarda, C. O. Hokka, and M. L. G. C. Araujo, “Clavulanic acid production processes in a tower bioreactor with immobilised cells,” Biochem. Eng. J., vol. 39, no. 1, pp. 131–136, 2008.
D. Gómez-Ríos, H. Ramírez-Malule, P. Neubauer, S. Junne, and R. Ríos-Estepa, “Data of clavulanic acid and clavulanate-imidazole stability at low temperatures,” Data Br., vol. 23, 2019.
D. B. Hirata et al., “Precipitation of clavulanic acid from fermentation broth with potassium 2-ethyl hexanoate salt,” Sep. Purif. Technol., vol. 66, no. 3, pp. 598–605, 2009.
H. Ramirez-Malule et al., “TCA cycle and its relationship with clavulanic acid production: A further interpretation by using a reduced genome-scale metabolic model of Streptomyces clavuligerus,” Bioengineering, vol. 8, no. 8, 2021.
H. L. Ser et al., “Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review,” Front. Microbiol., vol. 7, no. APR, 2016.
Barrera, R., Villa, A.L., Montes C. (2009). Measurement of Activity Coefficients at Infinite Dilution for Acetonitrile, Water, Limonene, Limonene Epoxide and their Binary Pairs. Fluid Phase Equilibria. (275), 46 – 51.
K. Chater, “Morphological and physiological differentiation in Streptomyces,” Microbial., R. In Losick., Ed. 1986, pp. 89–115.