Properties of concretes and mortars modified with nanomaterials: State of the art
DOI:
https://doi.org/10.31908/22159444.3522Keywords:
Nanoparticles, mechanical properties, chemical properties, concretesAbstract
The article studies some of the properties of the concrete modified with nanomaterials, being the most outstanding: increased compressive, flexural, traction and shear strength; increase of modulus of elasticity; reduction of porosity and permeability minimization; capacity of self-cleaning; better fluidity of the liquid mixture and improvement of plasticity. Emphasis is placed on six nanomaterialsas being the most used in the construction industry: Nano-silica, Titanium NanoDioxide, Nano-Magnetite, Calcium Nano-Carbonate, Aluminum Nano-Trioxide and Carbon Nanotubes. It is concluded that nanotechnology extends the potential of concrete and reduces its environmental impact, because it achieves greater mechanical resistance with smaller dimensions of the structural elements.
References
Agrios, A. G. & Pichat, P. (2005). State of the art and perspectives on materials and applications of photocatalysis over TiO2. Journal of Applied Electrochemistry,35(7), 655-663.
Amin, M. & Abu el-Hassan, K. (2015). Effect of using different types of nano materials on mechanical properties of high strength concrete. Construction and Building Materials, 80, 116-124.
Amin, M. S., El-Gamal, S. M. A. & Hashem, F. S. (2013). Effect of addition of nano-magnetite on the hydration characteristics of hardened Portland cement and high slag cement pastes. Journal of Thermal Analysis and Calorimetry, 112(3), 1253–1259.
Arani, A. J. & Kolahchi, R. (2016). Buckling analysis of embedded concrete columns armed with carbon nanotubes. Computers and Concrete, 17(5), 567-578.
Arefi, M. R., Javeri, M. R. & Mollaahmadi, E. (2011). To study the effect of adding Al2O3 nanoparticles on the mechanical properties and microstructure of cement mortar. Life Science Journal, 8(4), 613-617.
Azizi Shirkoohi, Z. (2016). Application of Nanotechnology in the Concrete Industry Improve the Performance of Sustainable Buildings. International Academic Journal of Science and Engineering, 3(3), 89-97.
Balaguru, P. & Chong, K. (2006). Nanotechnology and concrete: research opportunities. Proceedings of the ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, November 7, 2006, Denver, USA.
Belkowitz, J. S., Belkowitz, W. B., Nawrocki, K. & Fisher, F. T. (2015). Impact of Nanosilica Size and Surface Area on Concrete Properties. ACI Materials Journal, 112(3), 419-428.
Benedix, R., Dehn, F., Quaas, J. & Orgass, M. (2000). Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer, 5, 157-168.
Camiletti, J., Nehdi, M. L. & Soliman, A. M. (2013). Effect of nano-calcium carbonate on early-age properties of ultrahigh-performance concrete. Magazine of Concrete Research, 65(5), 297–307.
Cassar, L. (2004). Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bulletin, 29(5), 328-331
Chen, J., Kou, S. C. & Poon, C. S. (2012). Hydration and properties of nano-TiO2 blended cement composites. Cement and Concrete Composites, 34, 642-649.
Du, H., Du, S. & Liu, X. (2014). Durability erformances of concrete with nanosilica. Construction and Building Materials, 73, 705-712.
Eskandari, H., Vaghefi, M. & Kowsari, K. (2015). Investigation of Mechanical and Durability Properties of Concrete Influenced by Hybrid Nano Silica and Micro Zeolite. Procedia Materials Science, 11, 594-599.
Ge, Z., Wang, K., Sun, R., Huang, D. & Hu, Y. (2014). Properties of selfconsolidating concrete containing nano-CaCO3. Journal of Sustainable Cement- Based Materials, 3(3-4), 191-200.
George, C., Beeldens, A., Barmpas, F., Doussin, J. F., Manganelli, G., Herrmann, H…& Mellouki, A. (2016). Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering, 10(5), 1-11.
Gonzalez, M., Safiuddin, M., Cao, J. & Tighe, S. (2013). Sound Absorption and Friction Responses of Nanoconcrete for Rigid Pavements. Transportation Research Record: Journal of the Transportation Research Board, (2369), 87-94.
Gopinath, S., Mouli, P. C., Murthy, A. R., Iyer, N. R. & Maheswaran, S. (2012). Effect of nano silica on mechanical properties and durability of normal strength concrete. Archives of Civil Engineering, 58(4), 433-444.
Greco, E., Ciliberto, E., Cirino, A. M., Capitani, D. & Di Tullio, V. (2016). A new preparation of doped photocatalytic TiO2 anatase nanoparticles: a preliminary study for the removal of pollutants in confined museum areas. Applied Physics A, 122(530), 1-6.
Hassan, M. M., Dylla, H., Mohammad, L. N. & Rupnow, T. (2010). Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavementConstruction and building materials, 24(8), 1456-1461
Jafarbeglou, M., Abdouss, M. & Ramezanianpour, A. A. (2015). Nanoscience and Nano Engineering in Concrete Advances, a Review. International Journal of Nanoscience and Nanotechnology, 11(4), 263-273.
Jittabut, P. (2015). Effect of Nanosilica on Mechanical and Thermal Properties of Cement Composites for Thermal Energy Storage Materials. Energy Procedia, 79, 10-17.
Kang, H. J., Song, M. S., Park, J. H. & Song, S. J. (2011). Influence of Nano Silica Dispersant on Hydration Properties of Cementitious Materials. Journal of the Korean Ceramic Society, 48(6), 510-515.
Koohdaragh, M. & Mohamadi, H. H. (2011). Comparison of mechanical of the concrete samples containing micro-silica and nano-silica. Australian Journal of Basic and Applied Sciences, 5(10), 560-563.
Kharissova, O. V., Torres Martínez, L. & Kharisov, B. I. (2016). “Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers”. En: Advances in Carbon Nanostructures, ed. Prof. AMT da Silva, INTECH.
Larrea, P. & Domínguez, S. (2011). Hormigón simple utilizando agregado volcánico de las islas Galápagos “San Cristóbal”. Tesis. Escuela Superior Politécnica del Litoral. Lee, J. H., Kim, Y. K. & Lee, S. W. (2015). Experimental Study on the Long-term Performance of TiO2 Concrete for Road Structures. Journal of the Korean Society of Civil Engineers, 35(3), 691-698.
Li, H., Zhang, M. H. & Ou, J. P. (2006). Abrasion resistance of concrete containing nano-particles for pavement. Wear, 260, 1262-1266.
Li, Z., Wang, H., He, S., Lu, Y. & Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Materials Letters, 60(3), 356-359.
Liu, J., Li, Q. & Xu, S. (2015). Influence of nanoparticles on fluidity and mechanical properties of cement mortar. Construction and Building Materials, 101, 892-901.
Lin, K. L., Chang, W. C., Lin, D. F., Luo, H. L. & Tsai, M. C. (2008). Effects of nano-SiO2 and different ash particle sizes on sludge sh–cement mortar. Journal of Environmental Management, 88(4), 708-714.
Lu, L., Ouyang, D. & Xu, W. (2016). Mechanical properties and durability of ultrahigh strength concrete incorporating multi-walled carbon nanotubes. Materials, 9(6), 419-430.
Mahdikhani, M. & Ramezanianpour, A. A. (2014). Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume. Computers and Concrete, 14(2), 175-191.
Maubert, M., Soto, L., León, A. M. & Flores, J. (2009). Nanoturbos de carbono: La era de la nanotecnología. Razón y palabra, 68, 17-27.
Mohd Ibrahim, M. Y., Ramadhansyah, P. J., Mohd Rosli, H. & Wan Ibrahim, M. H. (2016). A review of microstructure properties of porous concrete pavement incorporating nano silica. Journal of Engineering and Applied Sciences, 11(20),11832-11835.
Mohd Ibrahim, M. Y., Ramadhansyah, P. J., Mohd Rosli, H., Wan Ibrahim, M. H. & Fadzli, M. N. (2015). Utilization of Nano Silica as Cement Paste in Mortar and Porous Concrete Pavement. In Advanced Materials Research, 1113, 135-139.
Mohd Ibrahim, M. Y., Ramadhansyah, P. J., Mohd Rosli, H. & Mohd Haziman, W. I. (2014). An Overview on the Performance of Nano Silica Materials on the Properties of Porous Concrete Pavement. Advanced Review on Scientific Research, 1(1), 34-42.
Molina-Prieto, L. F. (2016). Nanotecnología: herramienta inteligente para la conservación del patrimonio arquitectónico y urbano. Revista de investigación,9(1), 7-22. Molina-Prieto, L. F. (2015). Urban storm water resource management: strategies, policies and urban regulations in five European countries. Revista de investigación, 8(1), 125-138.
Murata, Y., Tawara, H., Obata, H. & Takeuchi, K. (1999). Air purifying pavement: development of photocatalytic concrete blocks. Journal of Advanced Oxidation Technologies, 4(2), 227-230.
Nazari, A., Riahi, S., Riahi, S., Shamekhi, S. F. & Khademno, A. (2010).Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. Journal of American Science, 6(5), 6-9. Pacheco-Torgal, F. & Jalali, S. (2011). anotechnology: advantages and drawbacks in the field of construction and building materials. Construction and Building Materials, 25(2), 582-590.
Portella Bragança, M. D. (2014). Avaliação e monitoramento dos mecanismos de deterioração do concreto exposto aos íons cloreto e sulfato e o efeito da adiçãode Nano-Fe3O4 por espectroscopia de impedancia eletroquímica. Tese Doutoral, Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-graduação em Engenharia-PIPE.
Quercia, G. & Brouwers, H. J. H. (2010). Application of nano-silica (nS) in concrete mixtures. In 8th fib International Ph. D. Symposium in ivil Engineering.Lyngby (pp. 431-436).
Ramirez, A. M., Demeestere, K., De Belie, N., Mäntylä, T. & Levänen, E. (2010). Titanium dioxide coated cementitious materials for air purifying purposes: preparation, characterization and toluene removal potential. Building and Environment, 45, 832-838. Rong, Z., Sun, W., Xiao, H. & Jiang, G. (2015). Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cement and Concrete Composites, 56, 25-31.
Safiuddin, M., Gonzalez, M., Cao, J. & Tighe, S. L. (2014). State-of-the-art report on use of nano-materials in concrete. International Journal of Pavement Engineering, 15(10), 940-949.
Said, A. M., Zeidan, M. S., Bassuoni, M. T. & Tian, Y. (2012). Properties of concrete incorporating nano-silica. Construction and Building Materials, 36, 838-844.
Sanchez, F. & Sobolev, K. (2010). Nanotechnology in concrete–a review. Construction and Building Materials, 24(11), 2060-2071.
Senff, L., Hotza, D., Repette, W. L., Ferreira, V. M. & Labrincha, J. A. (2010). Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Building Materials, 24(8), 1432-1437.
Shaikh, F. U. & Supit, S. W. (2014). Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO 3) nanoparticles. Construction and Building Materials, 70, 309-321.
Shang, S. S. & Song, X. B. (2017). Experimental Research on Mechanicals Performance of Carbon Nanotubes Reinforced Concrete. Applied Mechanics and Materials, 858, 173-178.
Shen, W., Zhang, C., Li, Q., Zhang, W., Cao, L. & Ye, J. (2015). Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. Journal of Cleaner Production, 87, 762-765.
Sikora, P., Horszczaruk, E., Cendrowski, K. & Mijowska, E. (2016). The Influence of nano-Fe3O4 on the microstructure and mechanical properties of cementitious composites. Nanoscale Research Letters, 11(182), 1-9. Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M. & Ahalawat,S. (2013).Beneficial role of nanosilica in cement based materials–A review. Construction and Building Materials, 47, 1069-1077.
Sobolev, K. & Gutiérrez, M. F. (2005). How nanotechnology can change the concrete world. American Ceramic Society Bulletin, 84(10), 14-18. Stefanidou, M. & Papayianni, I. (2012). Influence of nano-SiO2 on the Portland cement pastes. Composites Part B: Engineering, 43(6), 2706-2710.
Yazdi, N.A., Arefi, M.R., Mollaahmadi, E. & Nejand, B.A. (2011). To study the effect of adding Fe2O3 nanoparticles on the morphology properties and microstructure of cement mortar. Life Science Journal, 8(4), 550–554.
Yousef Mohamed, A. S. (2015). Nano-innovation in construction, a new era of sustainability. International Conference on Environment and Civil Engineering (ICEACE’2015) April 24-25, 2015, Pattaya (Thailand). Yu, R., Spiesz, P. & Brouwers, H. J. H. (2014). Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Construction and Building Materials, 65, 140-150.