Procedure for the determination of operation and design parameters considering the quality of non-centrifugal cane sugar
DOI:
https://doi.org/10.31908/19098367.2659Palabras clave:
Calidad, Diseño de procesos, modelización, simulaciónResumen
Se propone un procedimiento para el diseño de procesos agroindustriales teniendo en cuenta la calidad del producto. Se ejemplifica con un caso de estudio para producir azúcar de caña no centrifugada a nivel artesanal. El modelado y la simulación permitieron la selección adecuada de los parámetros de operación. Para ello, se consideraron como límites del proceso el jugo de caña con un pH de 5,35 y 12,55 °Brix. Para la concentración, se generaron valores aleatorios de pH 5,5 - 7, °Brix 89 - 93 y tiempo de concentración de 20 - 30 minutos. En la cristalización, se generaron valores aleatorios de pH 5,5 - 7, °Brix 90 - 94, tiempo de agitación de 10 - 20 minutos y temperatura de 40 - 60 °C. Se simularon 10 lotes equivalentes a un día, 120 lotes equivalentes a un mes y 1560 lotes equivalentes a un año. La inclusión de atributos de calidad en el diseño del proceso permitió reducir los productos defectuosos, se obtuvo un nivel Sigma superior a 3, los indicadores económicos y financieros son positivos cuando el color en unidades ICUMSA fluctúa entre 9000 - 11000.
Referencias
M. Guerrero and J. Escobar, “Eficiencia técnica de la producción de panela,” Rev. Tecnol., vol. 14, no. 1, pp. 107–116, 2015.
V. Cerda, A. Pérez, E. González, and D. Concepción, “El diseño de procesos bajo condiciones de incertidumbre: estrategia para el desarrollo socio-económico en la agroindustria ecuatoriana,” Univ. y Soc., vol. 11, no. 5, pp. 131–139, 2019.
F. Velásquez, J. Espitia, O. Mendieta, S. Escobar, and J. Rodríguez, “Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products,” J. Food Eng., vol. 255, pp. 32–40, Aug. 2019.
T. Vera, M. García, A. Otálvaro, and O. Mendieta, “Effect of processing technology and sugarcane varieties on the quality properties of unrefined non-centrifugal sugar,” Heliyon, vol. 5, no. 10, 2019.
M. Galicia, A. Hernández, H. Debernardi, J. Velasco, and J. Hidalgo, “Evaluación de la calidad e inocuidad de la panela de Veracruz, México,” AGROProductividad, vol. 10, no. 11, pp. 35–41, Nov. 2017.
J. M. García, P. C. Narváez, F. J. Heredia, Á. Orjuela, and C. Osorio, “Physicochemical and sensory (aroma and colour) characterization of a non-centrifugal cane sugar (‘panela’) beverage,” Food Chem., vol. 228, pp. 7–13, 2017.
M. Guerra and M. Mujica, “Physical and chemical properties of granulated cane sugar ‘panelas,’” Ciência e Tecnol. Aliment., vol. 20, no. 1, 2009.
V. Cerda et al., “Influencia de los parámetros operacionales de las etapas de concentración y cristalización en el color de la panela granulada,” in 1a Conferência Brasileira de Planejamento Experimental e Análise de Dados, 2020.
V. Cerda et al., “Simulation strategy to reduce quality uncertainty in the sugar cane honey process design,” Ing. e Investig., vol. 41, no. 1, pp. 1–11, 2021.
S. King and M. Marron, “Experience and Utilisation of an on-line sugar colorimeter in a raw sugar mill,” Proc Aust Soc Sugar Technol, vol. 31, no. 2005, pp. 493–502, 2009.
D. Pike, S. King, R. Broadfoot, and P. Woods, “Evaluation of the neltec ColourQ 1700CC for measuring the purity of magma from c centrifugals,” Int. Sugar J., vol. 121, no. 1448, pp. 582–589, 2019.
A. Pérez et al., “Procedimiento para enfrentar tareas de diseño de procesos de la industria azucarera y sus derivados,” Rev. Mex. Ing. Química, vol. 11, no. 2, pp. 333–349, 2012.
A. S. Rathore and G. Kapoor, “Implementation of Quality by Design for processing of food products and biotherapeutics,” Food Bioprod. Process., vol. 99, pp. 231–243, 2016.
A. C. Dimian, C. S. Bildea, and A. A. Kiss, Applications in Design and Simulation of Sustainable Chemical Processes. Amsterdam, The Netherlands: Susan Dennis, 2019.
J. J. Vargas Sánchez, J. J. Muñoz Mercado, N. A. Paba Luna, and N. Ordoñez Castro, “Aplicación de la técnica multivariada Manova a dos variables de control provenientes de tres modelos de simulación estocásticos de un proceso productivo,” Entre Cienc. e Ing., vol. 14, no. 28, pp. 66–75, 2020.
X. Zhang, T. Zhou, L. Zhang, K. Fung, and K. Ng, “Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach,” Ind. Eng. Chem. Res., vol. 58, no. 36, pp. 16743–16752, 2019.
V. Cerda, E. González, H. Millán, J. Ramos, and A. Pérez, “Estudio de viabilidad de la producción de miel de caña, diseño de procesos, aceptabilidad y análisis económico,” Tecnol. Química, vol. 40, no. 3, pp. 481–497, 2020.
V. Cerda, A. Pérez, and E. González, “Procedimiento para el diseño óptimo de procesos considerando la calidad: aplicación en la elaboración de miel de caña,” Cent. Azúcar, vol. 47, no. 4, pp. 103–113, 2020.
Codex Alimentarius Commission, “Proposed Draft Standard for Non-Centrifugated Dehydrated Sugar Cane Juice,” World Health Organization, 2013. [Online]. Available: www.codexalimentarius.org. [Accessed: 16-Dec-2021].
Y. Asikin, A. Kamiya, M. Mizu, K. Takara, H. Tamaki, and K. Wada, “Changes in the physicochemical characteristics, including flavour components and Maillard reaction products, of non-centrifugal cane brown sugar during storage,” Food Chem., vol. 149, no. apr, pp. 170–177, 2014.
M. Weerawatanakorn et al., “Physico-chemical properties, wax composition, aroma profiles, and antioxidant activity of granulated non-centrifugal sugars from sugarcane cultivars of Thailand,” J. Food Sci. Technol., vol. 53, no. 11, pp. 4084–4092, 2016.
M. S. Peters, K. Timmerhaus, and R. West, Plant Design and Economics for Chemical Engineers, Fifth. New York: McGraw Hill, 2003.
V. Cerda et al., “Automatic Control System for Cane Honey Factories in Developing Country Conditions,” Processes, vol. 10, no. 5, p. 915, May 2022.
O. Guijarro et al., “Remote monitoring of operational parameters for the cane honey production process,” Lámpsakos, vol. 25, pp. 59–69, 2021.
NMX, Industria Azucarera y alcoholera - Determinación de color por absorbancia en azúcares. MÉXICO, 2012.
Programa de Desarrollo Agroindustrial Rural, “Equipos de procesamiento de alimentos,” IICA-FAO, 1992. [Online]. Available: http://www.fao.org/fileadmin/templates/inpho/documents/EQUIPOS.pdf. [Accessed: 19-Mar-2020].
W. Vatavuk, “Updating the CE Plant Cost Index,” Chem. Eng., vol. 109, pp. 62–70, 2002.
Hadiyanto, R. M. Boom, G. van Straten, A. J. B. van Boxtel, and D. C. Esveld, “Multi-objective optimization to improve the product range of baking systems,” J. Food Process Eng., vol. 32, no. 5, pp. 709–729, 2009.
INEC- ESPAC, “Encuesta de Superficie y Producción Agropecuaria Continua,” 2020. [Online]. Available: https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/. [Accessed: 12-Jun-2020].