Sistemas automatizados para el control del recurso hídrico y variables ambientales bajo invernadero: aplicaciones y tendencias

Autores/as

DOI:

https://doi.org/10.31908/19098367.1796

Palabras clave:

Automatización agrícola, control, invernadero, recurso hídrico, tecnología agrícola, variables ambientales

Resumen

 Esta revisión se propone identificar las aplicaciones más recientes relacionadas con la automatización bajo invernadero con enfoque al uso adecuado del recurso hídrico y control de variables ambientales. La revisión hace parte del proyecto de investigación aplicada, diseño e implementación de un sistema SCADA para control del recurso hídrico y variables ambientales asociadas bajo invernadero mediante PLC. Se realiza una búsqueda detallada en revistas indexadas, nacionales e internacionales, páginas web, base de datos, y empresas relacionada al sector y se clasifica la información acorde a algunos criterios diferenciados; supervisión de variables bajo invernadero en sistemas irrigados, control automático del recurso hídrico y variables ambientales, adquisición de información para irrigación bajo invernadero, tendencias de la automatización en sistemas irrigados. A partir de la información se identifican las tecnologías recientes algunas aplicaciones, las tendencias y la necesidad de aplicarlas en el sector agrícola; como aporte para reducir el impacto de la migración de la mano de obra del campo a la ciudad.

Biografía del autor/a

  • Héctor Iván Tangarife Escobar, Servicio Nacional de aprendizaje – SENA

    Investigador del grupo de investigación GICEMET perteneciente al Centro Metalmecánico Servicio Nacional de Aprendizaje - SENA, área de mantenimiento industrial. Obtuvo su grado de ingeniero en Control de la Universidad Distrital Francisco José de Caldas Bogotá D.C, 2015. Luego realizó su especialización en informática y automática industrial de la misma universidad, en 2017, actualmente cursa maestría en instrumentación y automatización en la Universidad Antonio Nariño, Sede Bogotá D.C. Sus áreas de interés son la Automatización dirigida al sector agrícola, automatización industrial e instrumentación industrial.

  • Sandra Ximena Toro Meléndez, Servicio Nacional de aprendizaje – SENA

    Miembro del grupo de investigación CIBA CBA, Líder SENNOVA del Centro de Biotecnología Agropecuaria, Tecnóloga en Administración Agropecuaria del Centro de Biotecnología Agropecuaria, obtuvo su grado de Administradora de empresas agropecuarias en la Universidad Santo Tomás, en el año 2002 y en el año 2012 se graduó de Magíster en Sistemas Integrados de Gestión: Calidad, medio ambiente y riesgos laborales en la Universidad Internacional de La Rioja, España. Sus áreas de interés son el desarrollo de proyectos relacionados con la protección del medio ambiente, la seguridad y salud de los trabajadores y el sector agropecuario.

  • Cindy Vanessa Carmona Cadavid, Universidad Nacional de Medellín

    Obtuvo su grado en Ingeniería de Control en la Universidad Nacional de Colombia sede Medellín en 2013. Luego recibió su título de especialista en Robótica y Mecatrónica y Magíster en Ingeniería en la Universidad Pontificia Bolivariana, en 2017. Sus áreas de interés son el modelado de procesos para control, desarrollo de software y el uso de algoritmos evolutivos para la sintonía óptima de controladores, además del desarrollo de robótica para la exploración, monitoreo y conservación de entornos subacuáticos.

Referencias

D. Rozo, “Control y monitoreo de variables ambientales utilizando PLC y SCADA,” Rev. Colomb. Tecnol. Av., vol. 2, no. 2, pp. 71–79, 2003.

S. L. Li, Y. Han, G. Li, M. Zhang, L. Zhang, and Q. Ma, “Design and Implementation of Agricultral Greenhouse Environmental Monitoring System Based on Internet of Things,” Appl. Mech. Mater., vol. 121–126, pp. 2624–2629, 2011.

E. H. Gurban and G.-D. Andreescu, “Greenhouse environment monitoring and control: state of the art and current trends,” Environ. Eng. & Manag. J., vol. 17, no. 2, pp. 399–416, 2018.

C. J. Boaventura, “Greenhouse climate models: An overview,” EFITA Conf., vol. 5, no. 9, pp. 823–829, 2003.

N. Bennis, J. Duplaix, G. Enéa, M. Haloua, and H. Youlal, “Greenhouse climate modelling and robust control,” Comput. Electron. Agric., vol. 61, no. 2, pp. 96–107, 2008.

L. Chen, S. Du, Y. He, M. Liang, and D. Xu, “Robust model predictive control for greenhouse temperature based on particle swarm optimization,” Inf. Process. Agric., vol. 5, no. 3, pp. 329–338, 2018.

T. Ojha, S. Misra, and N. S. Raghuwanshi, “Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges,” Comput. Electron. Agric., vol. 118, pp. 66–84, 2015.

Aqeel-Ur-Rehman, A. Z. Abbasi, N. Islam, and Z. A. Shaikh, “A review of wireless sensors and networks’ applications in agriculture,” Comput. Stand. Interfaces, vol. 36, no. 2, pp. 263–270, 2014.

K. P. Ferentinos, N. Katsoulas, A. Tzounis, T. Bartzanas, and C. Kittas, “Wireless sensor networks for greenhouse climate and plant condition assessment,” Biosyst. Eng., vol. 153, pp. 70–81, 2017.

J. Sung, “The Fourth Industrial Revolution and Precision Agriculture,” in Automation in Agriculture, Securing Food Supplies for Future Generations, INTECH Open Access Publisher, 2018.

E. Martínez Sandoval, J. R. Martínez Rosas, Miguel Enrique; Martínez Sandoval, and H. Miranda Velasco, Manuel Moises; Cervantes De Ávila, “Machine Vision Systems – A Tool for Automatic Color Analysis in Agriculture,” in Automation in Agriculture, Securing Food Supplies for Future Generations, INTECH Open Access Publisher, 2018, pp. 125–148.

S. A. Nikolidakis, D. Kandris, D. D. Vergados, and C. Douligeris, “Energy efficient automated control of irrigation in agriculture by using wireless sensor networks,” Comput. Electron. Agric., vol. 113, pp. 154–163, 2015.

D. L. Ndzi et al., “Wireless sensor network coverage measurement and planning in mixed crop farming,” Comput. Electron. Agric., vol. 105, pp. 83–94, 2014.

M. Srbinovska, C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan, “Environmental parameters monitoring in precision agriculture using wireless sensor networks,” J. Clean. Prod., vol. 88, pp. 297–307, 2015.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswamia, “Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions,” Futur. Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

J. Yu and W. Zhang, “Study on Agricultural Condition Monitoring and Diagnosing of Integrated Platform Based on the Internet of Things,” Comput. Comput. Technol. Agric. VI, vol. 392, pp. 244–250, 2013.

F. Karim, F. Karim, and A. Frihida, “Monitoring system using web of things in precision agriculture,” Procedia Comput. Sci., vol. 110, pp. 402–409, 2017.

R. Gonzalez and R. Woods, Digital image processing, 3rd ed. New Jersey: Pearson Education, Inc., 2008.

F. and agriculture organization FAO, “Uso del agua en la agricultura,” 2005, 2005.

F. Organización de las Naciones Unidas para la Alimentación, “Agua y cultivos, logrando el uso óptimo del agua en la agricultura,” 2002. [Online]. Available: http://www.fao.org/docrep/005/Y3918S/y3918s00.htm#TopOfPage.

S. Dormido, J. Sánchez, and E. Kofman, “Muestreo, control y comunicaci{ó}n basado en eventos,” Rev. Iberoam. Autom{á}tica e Inform{á}tica Ind., vol. 5, no. 1, pp. 5–26, 2008.

A. Pawlowski, J. A. Sanchez, J. L. Guzman, F. Rodriguez, M. Berenguel, and S. Dormido, “Event-based control for a greenhouse irrigation system,” 2016 2nd Int. Conf. Event-Based Control. Commun. Signal Process. EBCCSP 2016 - Proc., 2016.

V. Andaluz, A. Tovar, K. Bedón, J. Ortiz, and E. Pruna, “Automatic control of drip irrigation on hydroponic agriculture: Daniela tomato production,” IEEE, vol. I, pp. 1–6, 2016.

I. Idris and M. I. Sani, “Monitoring and control of aeroponic growing system for potato production,” Proc. 2012 IEEE Conf. Control. Syst. Ind. Informatics, ICCSII 2012, pp. 120–125, 2012.

S. Yan-Fang, C. Hebei Software Inst., Baoding, and S. J.-G. ; X. Yu-Qian, “Design and Application of Distributed Intelligent Greenhouse Computerized System,” 2015 Seventh Int. Conf. Meas. Technol. Mechatronics Autom., pp. 331–334, 2015.

A. N. Arvindan and D. Keerthika, “Experimental investigation of remote control via Android smart phone of arduino-based automated irrigation system using moisture sensor,” 2016 3rd Int. Conf. Electr. Energy Syst. ICEES 2016, pp. 168–175, 2016.

R. Grigoriu, A. Voda, N. Arghira, V. Calofir, and S. S. Iliescu, “Temperature Control of a Greenhouse Heated by Renewable Energy Sources,” pp. 494–499, 2015.

K. Al-Aubidy and M. Ali, “Real-time monitoring and intelligent control for greenhouses based on wireless sensor network,” Multi-Conference …, pp. 1–7, 2014.

E. H. Gurban and G. Andreescu, “Comparison Study of PID Controller Tuning for Greenhouse Climate with Feedback-Feedforward Linearization and Decoupling,” Int. Conf. Syst. Theory, Control Comput., pp. 1–6, 2012.

A. Gómez, “Implementation of a Multivariable Predictive,” pp. 195–203, 2009.

R. Jose, C. Coneo, and M. Sanjuan, “Diseño E Implementación De Un Controlador Predictivo Tipo,” no. February, 2007.

D. U. Y. Sen, M. A. Jiao, Q. I. N. L. Lin, Z. H. Bin, and W. U. Gang, “Application of Generalized Predictive Control Algorithm for Temperature Control in Modern Greenhouse,” pp. 4342–4347, 2016.

A. Ramírez, F. Rodríguez, J. L. Guzmán, and M. Berenguel, “A multiobjective approach to hierarchical control of greenhouse crop production,” pp. 2519–2526, 2007.

X. Jun and L. Zhou, “Design of Fuzzy PID Control Algorithm Facing to Greenhouse,” 2017 9th Int. Conf. Intell. Human-Machine Syst. Cybern., pp. 130–133, 2017.

A. Carrasquilla-Batista and A. Chacón-Rodríguez, “Proposal of a fuzzy logic controller for the improvement of irrigation scheduling decision-making in greenhouse horticulture,” 2017 1st Conf. IEEE PhD Res. Microelectron. Electron. Lat. Am. PRIME-LA 2017, 2017.

E. Giusti and S. Marsili-Libelli, “A Fuzzy Decision Support System for irrigation and water conservation in agriculture,” Environ. Model. Softw., vol. 63, pp. 73–86, 2015.

H. Navarro-Hellín, J. Martínez-del-Rincon, R. Domingo-Miguel, F. Soto-Valles, and R. Torres-Sánchez, “A decision support system for managing irrigation in agriculture,” Comput. Electron. Agric., vol. 124, pp. 121–131, 2016.

J. Ma, Y. Sen Du, L. L. Qin, G. Wu, and D. X. Wang, “Hybrid control of greenhouse temperature system based on crop temperature integration theory,” Chinese Control Conf. CCC, pp. 2426–2431, 2017.

M. A. Abas and M. Dahlui, “Development of greenhouse autonomous control system for Home Agriculture project,” ICAMIMIA 2015 - Int. Conf. Adv. Mechatronics, Intell. Manuf. Ind. Autom. Proceeding - conjunction with Ind. Mechatronics Autom. Exhib. IMAE, vol. 2015, no. Icamimia, pp. 12–17, 2016.

M. Amir Abas, N. Amalia Sapiee, and M. Dahlui, “Autonomous Irrigation Hours through Loop Signals of Weather Sensors,” Proc. - AMS 2015 Asia Model. Symp. 2015 - Asia 9th Int. Conf. Math. Model. Comput. Simul., pp. 52–57, 2016.

S. Yang, P. Lu, L. Okushima, and S. Sase, “Precision irrigation system based on detection of crop water stress with acoustic emission technique,” Int. Conf. Inf. Acquis. 2004. Proceedings., pp. 444–447, 2004.

T. Guo and W. Zhong, “Design and implementation of the span greenhouse agriculture Internet of Things system,” Proc. 2015 Int. Conf. Fluid Power Mechatronics, FPM 2015, pp. 398–401, 2015.

Y. Li, P. Niu, and Z. Su, “Design of greenhouse monitoring and control system based on LED lighting,” 2015 12th China Int. Forum Solid State Light. SSLCHINA 2015, pp. 123–126, 2015.

P. V. Vimal and K. S. Shivaprakasha, “IOT based greenhouse environment monitoring and controlling system using Arduino platform,” 2017 Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2017, vol. 2018–Janua, pp. 1514–1519, 2018.

Z. Li, J. Wang, R. Higgs, L. Zhou, and W. Yuan, “Design of an Intelligent Management System for Agricultural Greenhouses Based on the Internet of Things,” Proc. - 2017 IEEE Int. Conf. Comput. Sci. Eng. IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput. CSE EUC 2017, vol. 2, pp. 154–160, 2017.

S. Alyousif, N. F. Zainuddin, and B. Bin Hamzah, “Intelligent temperature control system at greenhouse,” Int. J. Appl. Eng. Res., vol. 12, no. 9, pp. 1811–1814, 2017.

S. Ma, “Design of intelligent monitoring system for greenhouse,” Proc. - 2010 Int. Conf. Multimed. Commun. Mediacom 2010, pp. 31–34, 2010.

T. Li, G. Shi, J. Hou, M. Wei, X. Lang, and G. Zhang, “Greenhouse intelligent control system based on STM32F107 and switched Ethernet,” J. Theor. Appl. Inf. Technol., vol. 46, no. 1, pp. 426–433, 2012.

L. Zhang, C. Li, Y. Jia, and Z. Xiao, “Design of Greenhouse Environment Remote Monitoring System Based on Android Platform,” Chem. Eng. Trans., vol. 46, pp. 739–744, 2015.

Y. Jun, “Design of intelligent monitoring and controlling system for greenhouse,” 2011 Int. Conf. Electr. Control Eng. ICECE 2011 - Proc., pp. 629–632, 2011.

Q. NIU, “A desingn of modern green house environmental monitoring system,” Asian Agric. Res., vol. 1, no. 1, pp. 57–60, 2017.

W. Qui, L. Dong, F. Wang, and H. Yan, “Desing of intelligent greenhouse environment monitoring system based in zigbee and embedded technology,” IEEE, pp. 12–13, 2014.

M. A. K. Echaieb, F. T. E. Fabrizio, and A. I. A. Mami, “Fuzzy Decoupling Control of Greenhouse Climate,” Springer J., pp. 2805–2812, 2015.

H. Hu, L. Xu, and E. D. Goodman, “NSGA-II-based nonlinear PID controller tuning of greenhouse climate for reducing costs and improving performances,” Springer J., pp. 927–936, 2014.

M. Nadafzadeh and S. Abdanan, “Design and fabrication of an intelligent control system for determination of watering time for turfgrass plant using computer vision system and artificial neural network,” Precis. Agric., no. 0123456789, 2018.

A. Maher, E. Kamel, and F. Enrico, “An intelligent system for the climate control and energy savings in agricultural greenhouses,” Energy Effic., pp. 1241–1255, 2016.

J. A. Jiang et al., “A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses,” Precis. Agric., vol. 17, no. 6, pp. 766–785, 2016.

W.-M. Yang et al., “A Study on Greenhouse Automatic Control System Based on Wireless Sensor Network,” Wirel. Pers. Commun., vol. 56, no. 1, pp. 117–130, 2009.

Descargas

Publicado

2020-07-19

Número

Sección

Artículos

Cómo citar

Sistemas automatizados para el control del recurso hídrico y variables ambientales bajo invernadero: aplicaciones y tendencias. (2020). Entre Ciencia E Ingeniería, 14(27), 91-98. https://doi.org/10.31908/19098367.1796