Control de temperatura en intercambiadores de calor tipo coraza-tubo: una revisión realizada a la industria

Autores/as

DOI:

https://doi.org/10.31908/19098367.1763

Palabras clave:

Control de temperatura, control de procesos industriales, controladores PID, criterios de desempeño, diseño de control, sistemas con retardo, sistemas de control cerrado

Resumen

Esta revisión sobre lazos de temperatura en intercambiadores de calor tipo coraza-tubo, parte de un estudio realizado a la industria de la región del Valle del Cauca donde se identifican en la ingeniería de control de los intercambiadores de calor las siguientes deficiencias: desconocimiento del modelo, inexperiencia en la selección de las estrategias de control, pobre sintonía de los algoritmos de control y desconocimiento de criterios de evaluación de desempeño. La literatura consultada muestra una gran cantidad de métodos de identificaciones de modelos y estrategias de controles y sintonías aplicados a intercambiadores, sin embargo, en su mayoría son implementados a nivel de simulación, despreciando las no linealidades e interacciones del intercambiador en el proceso industrial. La revisión presenta diferentes métodos y conceptos usados para la obtención de modelos, estrategias de control, sintonía y evaluación de lazos de control que se encuentran en la literatura desde el 2010.

Biografía del autor/a

  • Juan Gonzalo Álvarez Diaz, SENA

    Nació en Manizales, Caldas. Se graduó de la Universidad Nacional de Colombia como Ingeniero Electrónico. Obtuvo su título de maestría en Ingeniería de la Universidad del Valle, Cali, en 2011. Es instructor del área de instrumentación y automatización en el Servicio Nacional de Aprendizaje – SENA desde el 2008. Ha sido profesor hora catedra en la Universidad del Valle desde el 2011. Sus áreas de interés son la instrumentación, el control de procesos, Comunicaciones industriales y sistemas SCADA.

  • Juan Manuel Armero Viveros, SENA

    Nació en Cali, Valle del Cauca. Se graduó de la Universidad del Valle de Colombia como ingeniero Electrónico. Obtuvo su título de maestría en ingeniería de la Universidad del Valle, Colombia, en 2018. Ha sido instructor del área de automatización Industrial en el servicio nacional de Aprendizaje - SENA. Actualmente es ingeniero de instrumentación e infraestructura en CELSIA. Sus áreas de interés son el control de procesos, electrónica de potencia e instrumentación Geotécnica.

  • Carlos Andres Urrutia, SENA

    Nació en Popayán, Cauca, Colombia. Se graduó de la Universidad del Cauca. Obtuvo título como Ingeniero en Electrónica con estudios en Telecomunicaciones. Soy Evaluador de Competencias Laborales en Instrumentación y Automatización, Sistemas de Energías Renovables en el Servicio Nacional de Aprendizaje SENA. Docente de la Institución Universitaria Antonio José Camacho desde el 2010. Áreas de interés instrumentación, control de procesos y sistemas de energías renovables.

Referencias

J. Jilek, (2016, may). “Heat exchangers in europe,”. [Online]. Available: www.cbi.eu/market-information

M. Ruel, “The conductor directs this orchestra. Shift from pneumatic instrumentation to ultramodern equipment no panacea.” InTech Magazine, 2003.

Bernardo Soares Torres, F´abio Barros de Carvalho, “Perfomance assessment of control loops - case studies,” IFAC 2006.

D. V. Mullick S, “Consider integrated plant design and engineering,” Hydrocarbon Processing, pp. 81 – 85, Dec. 2007.

P. R. Raul, H. Srinivasan, S. Kulkarni, M. Shokrian, G. Shrivastava, and R. R. Rhinehart, “Comparison of model-based and conventional controllers on a pilot-scale heat exchanger,” ISA Transactions, vol. 52, no. 3, pp. 391 – 405, 2013.

F. Kuo, Benajmin. Golnaraghi, Ingenieria de Control Moderna, 9th ed. John Willey & Sons, Inc, 2010.

A. V. Duka and S. E. Oltean, “Fuzzy control of a heat exchanger,” Proceedings of 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 135–139, May 2012.

A. Vasickaninova and M. Bakosova, “Control of a heat exchanger using neural network predictive controller combined with auxiliary fuzzy controller,” Applied Thermal Engineering, vol. 89, pp. 1046 – 1053, 2015.

A. Vasickaninova, M. Bakosova, A. Meszaros, and J. Oravec, “Fuzzy controller design for a heat exchanger,” 2015 IEEE 19th International Conference on Intelligent Engineering Systems (INES), no. 1, pp. 225–230, 2015.

Y. L. G. H. Jianhua Zhang, Wenfang Zhang, “Controller design for a heat exchanger in waste heat utilizing systems,” Advances in Swarm Intelligence. Second International, ICSI 2011, Chongqing China. Proceedings, Part II. Springer., 2011.

A.-V. DUKA, M. DULA˘ U, and S.-E. OLTEAN, “Robust control of a heat exchanger using a smith predictor,” Interdisciplinarity in Engineering International Conference “Petru Maior” University of Tırgu Mures, 2012.

M. Dulau, S. Oltean, and A. Gligor, “Conventional control vs. robust control on heat-exchangers,” Procedia Technology, vol. 19, pp. 534 – 540, 2015.

A. Vasiˇckaninov´a and M. Bakoˇsov´a, “Application of H2 and H1 Approaches to the Robust Controller Design for a Heat Exchanger,” Chemical Engineering Transactions, 11 2013.

K. Ogata, Ingeniería de Control Moderna, 5th ed. Pearson Education. S.A., 2010.

C. Antonio, Instrumentation Industrial, 8th ed. Alfaomega Grupo Editoe, S.A. de C.V., México, 2010.

Tatang Mulyana, Farah Najaa Suhaimi, “Arx model of four types heat exchanger identification,” Jan. 2011, sin publicar.

S. P. S¨oderstr¨om. Torsten, System Identification, 1st ed. Prentice Hall International, 1989.

R. Serth, Process HEat Transfer Principles and Applications, 1st ed. Elsevier, 2007, vol. 1.

D. G. Mendisaval, Intercambiadores de calor: Tipos Generales y Aplicaciones., mar 2002, ch. 1, p. 3.

Manual de Intercambiador de calor. Instrucciones y Mantenimiento, 2010.

Álvarez D. Juan Gonzalo, Moreno S. Jorge Enrique, “Diseño e implementación de un sistema de control cascada en la planta de intercambio térmico - pit000,” Informado Técnico (Colombia) 81(1) Enero - junio 2017, pp. 32–43, 2017.

K. J. Aˆ stro¨m and T. Ha¨gglund, PID controllers: Theory, Design, and Tuning, 2nd ed. Instrument Society of America, Research Triangle Park, NC, 1995, vol. 10.

S. PADHEE, “Controller design for temperature control of heat exchanger system: Simulation studies,” WSEAS TRANSACTIONS on SYSTEMS and CONTROL, vol. 9, 2014.

A. B. Smith, Carlos A. Corripio, Principles and Practice of Automatic Process Control, 2nd ed. John Willey & Sons, Inc, 1997.

B. W. Bequette, Process Control. Modeling, Design and Simulation. Prentice Hall International Series in the Physical and Chemical Engineering Sciences, 2003, vol. 1.

M. M. I. Alberto Aguado Behar, Identificación y Control Adaptativo, 1st ed. Pretice Hall, S.A., 2003.

T. Mulyana, “Parametric and non-pametric identification of shell and tube heat exchanger mathematical model,” Ph.D. dissertation, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 2014.

A. Vasiˇckaninov´a, M. Bakoˇsov´a, A. M´esz´aros, and J. J. Klemeˇs, “Neural network predictive control of a heat exchanger,” Applied Thermal Engineering, vol. 31, no. 13, Aug. 2011.

Vera-García a, J.R. García-Cascales, “A simplified model for shell-and-tubes heat exchangers: Practical application,” Applied Thermal Engineering, no. 30, pp. 1231 – 1241, 2010.

P. Laszczyk, “Simplified modeling of liquid-liquid heat exchangers for use in control systems,” Applied Thermal Engineering, vol. 119, pp. 140–155, Jun. 2017.

A. K. Alexander Michel, “Accurate low-order dynamic model of a compact plate heat exchanger,” International Journal of Heat and Mass Transfer, no. 61, pp. 323 – 331, 2013.

H. Werner, Control Systemes Theory and Design. Technische Universit¨at Hamburg, oct 2012, ch. 7, p.290.

T. Mulyana, “A nonparametric system identification based on transient analysis with plant process of heat exchanger as study case,” International Journal of Innovation in Mechanical Engineering and Advanced Materials, vol. 1, no. 1, pp. 19–26, 2015.

D. Hanafi, M. N. M. Than, A. A. A. Emhemed, T. Mulyana, A. M. Zaid, and A. H. Johari, “Heat exchanger’s shell and tube modeling for intelligent control design,” 2011 IEEE 3rd International Conference on Communication Software and Networks, pp. 37–41, May 2011.

V. M. Alfaro, “Identificación de procesos sobre amortiguados utilizando técnicas de lazo abierto,” Ingeniería. Revista de la Universi*dad de Costa Rica, vol. 11, no. 1,2, 2001.

A. Sahoo, T. Radhakrishnan, and C. S. Rao, “Modeling and control of a real time shell and tube heat exchanger,” Resource-Efficient Technologies, vol. 3, no. 1, pp. 124 – 132, 2017.

S. B. Prusty, S. Padhee, U. C. Pati, and K. K. Mahapatra, “Comparative performance analysis of various tuning methods in the design of pid controller,” Michael Faraday IET International Summit: MFIIS-2015, pp. 43–48, Sept 2015.

K. J. Aˆ stro¨m and Ha¨gglund, “Automatic tuning of simple regulator with specifications on phase and amplitud margins,” 1984 International Federation of Automatic Control, vol. 20, no. 5, pp. 645–651, 1984.

V. Bob´al, M. Kubalˇc´ık, and P. Dost´al, “Identification and self-tuning predictive control of heat exchanger,” 2013 International Conference on Process Control (PC), pp. 219–224, June 2013

G. M. Sarabeevi, “Dead time compensation in shell and tube heat exchanger system using smith predictor,” International Journal of Science and Research (IJSR), no. 5, pp. 1853 – 1885, 2016.

W. Tan, J. Liu, T. Chen, and H. J. Marquez, “Comparison of some well-known pid tuning formulas,” Computers & Chemical Engineering, vol. 30, no. 9, pp. 1416 – 1423, 2006.

V. M. Alfaro, “Método de sintonización de controladores pid que operan como reguladores,” Ingeniería. Revista de la Universidad de Costa Rica, vol. 12, no. 1,2, 2002.

H. Subawalla, V. P. Paruchuri, A. Gupta, H. G. Pandit, and R. R. Rhinehart, “Comparison of model-based and conventional control: a summary of experimental results,” Industrial & Engineering ChemistryResearch, vol. 35, no. 10, pp. 3547–3559, 1996.

B. W. Bequette, “Nonlinear control of chemical processes: a review,” Industrial & Engineering Chemistry Research, vol. 30, no. 7, pp. 1391–1413, 1991.

M. B. A. Vasiˇckaninov´a, “Robust controller design for a heat exchanger,” 2015 International Conference on Process Control (PC), 2015.

A. Alam, R. P. Gupta “Performance analysis of intelligent controller for temperature of heat exchanger,” International conference on Signal Processing Communication, Power and Embedded System (SCOPES), pp. 12 – 17, 2016.

K. Kishore, G. Jalalu, K. Prasanti “Control of heat exchanger using hybrid fuzzy - pi,” International Journal of Engineering Research and Applications (IJERA), pp. 1396 – 1400, 2013.

S. Padhee, Y. B. Khare, and Y. Singh, “Internal model based pid control of shell and tube heat exchanger system,” Students’ Technology Symposium (TechSym), 2011 IEEE, pp. 297–302, Jan 2011.

S. D. M. Smith Carlos. Corripio, Armando. Basurto, Control automático de procesos: teoría y práctica. Limusa, 1991.

P. Chalupa, V. Bobál, M. kubalcic, J. Novac “Adaptive predictive control of through-flow heat exchanger,” 18th Mediterranean Conference on Control & Automation, 2010

Descargas

Publicado

2020-07-19

Número

Sección

Artículos

Cómo citar

Control de temperatura en intercambiadores de calor tipo coraza-tubo: una revisión realizada a la industria. (2020). Entre Ciencia E Ingeniería, 14(27), 41-49. https://doi.org/10.31908/19098367.1763